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Section 2:  Objectives 
 
 
The objectives of this project were to explore decomposition algorithms that solve 
optimization models under uncertainty. In order to accommodate a variety of future 
scenarios, our algorithms are designed to address large scale models.  The main 
accomplishments of the project can be summarized as follows. 

 design and evaluate decomposition methods for stochastic mixed-integer 
programming (SMIP) problems (Yuan and Sen [2008]) 

 accelerate stochastic decomposition (SD) as a prelude to using SD for  SMIP as 
well as a multi-stage version of SD (Sen et al [2007], Zhou and Sen [2008]).  

 develop a theory for parametric analysis of mixed-integer programs, and provide 
economically justifiable estimates of shadow prices from mixed-integer linear 
programming models (Sen and Genc [2008]) 

 
The first two bullets relate to stochastic programming, whereas the last bullet addresses 
one of the long-standing open questions in discrete optimization, namely, parametric 
analysis in MILP models.  This paper (listed as [1]) is likely to have a long term impact 
on a variety of fields including discrete optimization, operations research, and 
computational economics. 

Section 3:  Accomplishments / New Findings: Research 
Highlights and Relevance to the Air Force Mission 

 
This section presents the principal research accomplishments of this project. It is 
organized into three main sub-sections, each representing a paper that has been submitted 
for publication.  These new nuggets of knowledge cover a wide array of discrete 
optimization research, ranging from new theory, algorithms, and computational 
experiments.  Results that are of particular relevance to the Air Force are highlighted 1.  
 

3.1 Stochastic Mixed-Integer Programming Algorithms 
 
Stochastic Mixed Integer Programs (SMIP) are recognized as one of the most formidable 
classes of mathematical programming problems. Not only are there significant challenges 
due to potentially large number of scenarios, but, SMIP with integers in the second stage 
give rise to a non-convex and discontinuous recourse function that may be difficult to 
optimize. Ahmed et al [2004] provide an illustration of how the presence of integer 
variables in the second stage leads to extremely complicated (non-convex and  
discontinous) recourse functions.  Over the past few years, there have been significant 

                                                 
1  In this section, when a reader encounters one or more sentences in italics, he/she should interpret 
the content as being directly relevant to the Air Force and its Technological Challenges. 
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advances in the design of algorithms for solving SMIP problems (Sen [2005] for a 
survey). However, computational implementations, and results for large scale problems 
have been slow in coming.  Some exceptions to this comment are papers by Alonso-
Ayuso et al [2003], and Ntaimo and Sen [2006].  In the former paper, the authors present 
a branch-and-fix algorithm which they use to solve a supply chain planning problem, 
whereas the latter presents a computational comparison using supply chain as well as 
large scale stochastic server location problems.  Research funded through the current 
grant presents new computational approaches (Yuan and Sen [2008]) for decomposition-
based branch-and-cut method (D2-BAC, Sen and Sherali [2006]).  The main 
computational tools developed by Yuan and Sen [2008] (submitted to INFORMS Journal 
on Computing) include a streamlined cut generation procedure which itself can be 
interpreted as a stochastic linear program to choose cut D2 coefficients that are effective 
for a variety of second stage scenarios. In addition, our approach overcomes the need to 
solve certain linear programs that convexify the value function approximations.  These 
enhancements yield some of the fastest solution times reported on server location 
problems, with speed-ups averaging a factor of about 2.  As a result of such speed-ups, a 
collaborative DARPA project between AT&T and Telecordia is planning to implement 
these tools for a new generation of design tools for communications networks. 
 

3.2 Accelerating Stochastic Decomposition  
 
Since stochastic linear programming forms an integral part of SMIP as well as multi-
stage decision-making under uncertainty, we have studied methods that accelerate the 
stochastic decomposition (SD) algorithm. Specifically, we study two issues: a) are there 
any conditions under which the regularized version of SD generates a unique solution? 
and b) is there a way to modify the SD algorithm so that a user can trade-off solution 
times with solution quality? The second issue addresses the scalability of SD for very 
large scale problems for which computational resources may be limited and the user may 
be willing to accept solutions that are “nearly optimal''.  These issues become critical in 
the solution of SMIP problems where a large number of stochastic linear programming 
approximations may be necessary.  The same considerations arise in the solution of 
multi-stage stochastic linear programs in which the value function may be approximated 
by re-sampling previously observed scenarios (as in particle filtering). In Sen et al [2008] 
(submitted to Computers and Operations Research), we show that by using bootstrapping 
(re-sampling) the regularized SD algorithm can be accelerated without significant loss of 
optimality.  Another paper which applies these ideas to multi-stage stochastic linear 
programming is currently under preparation for Mathematical Programming (Zhou and 
Sen [2008]). 
 

3.3:  Parametric Analysis for MILP 
 

One of the more important open problems in trade-off analysis deals with pricing integral 
activities or discrete decisions (as well as continuous decisions). This is vital for cost-
effective programs in which large fixed-costs play a key role. One may model these 
choices using mixed-integer linear programming (MILP), and pricing these activities rely 
on shadow prices for MILP.   
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It is well known that in general MILP problems present duality gaps and dual variables 
(as part of the price system) are not unique and not as conveniently interpreted. These 
issues have been visited for almost fifty years starting with Gomory and Baumol (1960) 
and subsequently by a number of other authors; however, these issues remained 
unresolved.  Yet, shadow prices continue to play a prominent role in economic theory and 
practice.  For instance, starting in 2008, economists for the British government have 
agreed to a certain shadow price schedule for pricing carbon emissions in evaluating new 
projects until the year 20502. Without access to tools that provide justifiable estimates of 
shadow prices, the social value of such programs will remain questionable. 
 
Research associated with this project (Sen and Genc [2008]) provides an important step 
in allocating charges of indivisible goods, and moreover, characterizes shadow prices for 
resources in 0-1 MILP problems. In particular we address the following question: Is it 
possible to prescribe shadow prices that are unique, and recover the total cost of inputs, 
even when the underlying model includes indivisibilities that are modeled using integer 
variables?  Our approach is guided by two ideas:  
a) We propose a new measure of two-sided shadow prices for binary MILP problems in 

which the optimal objective value function is both non-convex and discontinuous. 
This measure also generalizes the two-sided shadow prices used in the context of 
linear programming (LP) (Gal (1997)).  

b) Balas (1979) (see also Sherali and Adams (1990)) shows that for 0-1 MILP problems, 
the convex hull of feasible points can be generated by using certain linear programs in 
which the contributions of each technology can be traced.  

 
For the case of 0-1 MILP problems, we show that these two ideas lead to the existence of 
unique shadow prices for 0-1 MILP problems.  As in O’Neill et al (2005), we explain the 
optimal cost of a primal MILP as the value of outputs plus the total “start-up” price of 
technologies. However, in contrast to the above paper, the prices suggested by our 
research are guaranteed to be non-negative. We also study the value function of MILP 
problems with a view towards obtaining accurate shadow prices. In order to do so, we 
define a new class of two-sided shadow prices. We develop an LP-based methodology for 
calculating them.  While there is a modest computational cost due to the solution of LPs, 
the shadow price estimates can be expected to be stronger in general. These prices also 
have the shadow price interpretations similar to those in classic linear programming. In 
the process of developing this framework, we also provide an interpretation of implied 
constraints in the form of productivity requirements that must be satisfied for integer 
programming problems. The paper reporting these results (Sen and Genc [2008]) will be 
submitted to the Computational Economics special issue of Operations Research. 

Section 4:  Personnel Supported 
 
Suvrajeet Sen (PI) and a graduate student (Yang Yuan) were supported through this 
grant.           

                                                 
2 See http://www.defra.gov.uk/environment/climatechange/research/carboncost/pdf/HowtouseSPC.pdf 
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Section 5: Publications 
 
(all papers listed below can be obtained by sending e-mail to the PI at sen.22@osu.edu) 
 

S. Sen and T. Genc, Non-negativity of Start-up Prices and Uniqueness of Shadow 
Prices in a Resource Allocation Model with Indivisibilities, prepared for submission 
to computational economics special issue of Operations Research. 

 
S. Sen, Z. Zhou and K. Huang, Enhancements of Two-Stage Stochastic 
Decomposition, submitted to Computers and Operations Research, (abridged version 
to appear in Stochastic Programming: The State of the Art, Volume edited in honor of 
George B. Dantzig, G. Infanger editor). 
 
 Y. Yuan and S. Sen, Enhanced cut generation methods for decomposition-based 
branch-and-cut algorithms for two-stage stochastic mixed-integer programs, 
submitted to INFORMS Journal on Computing.  
 
Z. Zhou and S. Sen, Multi-stage Stochastic Decomposition, prepared for submission 
to Mathematical Programming. 
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